Design Guide **Updated: 13 February 2018** Organized and Run by: EERI Student Leadership Council (SLC) Competition Website: https://slc.eeri.org/2018-seismic-design-competition/ # 1. <u>Disclaimer</u> This guide is meant to supplement the Official Rules and does not override any of the requirements in the Official Rules. The Official Rules are not subject to change from the time the Official Rules are released to the end of the competition, but this guide may be altered during that time. The computer-generated images are examples to illustrate conformity to the rules. Note that many of the images only demonstrate conformity for the specific sections in the Official Rules that they directly refer to. Also, please be aware that the images of sample models are not designed to resist seismic ground excitation. # 2. Member Requirements #### 2.1. Dimension Restrictions According to Section 6.2.a, each frame member before any glue is applied and in its final state attached to the model must fit in the box (not to scale) below with the dimensions shown: Section 6.2.a also applies to any curved frame member. The frame member in its final state must fit in a box of the given dimensions. If a member has maximum cross section, then the member could not be curved, since it would no longer fit inside of the box. According to Section 6.3.a, each wall member before any glue is applied and in its final state attached to the model must fit in the box (not to scale) below with the dimensions shown: There are no restrictions on how each member is cut as long as it is able to fit in the box in its final state before any glue is applied. A frame member may fit in a wall member box and vice versa. Teams should take note that there are restrictions on the orientation of wall members (Section 6.3.b). Judges will classify any member than can fit in the frame member box as a frame member. Members that fit in the wall member box will be classified as a wall member and subject to orientation restrictions (Section 6.3.b). Judges will use discretion when determining the intended type of member, for members that do not fit in either box. #### 2.2. Wall Member Orientation According to Section 6.3.b, the grain of a wall member must be normal to the top surface of the base plate. Each wall member must span at least 1.50 in. vertically as show below (Section 6.3.a). # 3. Connection Requirements Individual members in contact shall have glue between the contact surfaces or faying surfaces (Sections 6.4.a, 6.4.b, 6.4.c, and 6.4.d). ## 3.1. Faying Surfaces The faying surface is defined as the surface or portion of a surface of a frame or wall member in direct contact with the surface or portion of a surface of another frame or wall member. Glue shall be between these surfaces (Sections 6.4.a, 6.4.b, 6.4.c, and 6.4.d). Two examples of faying surfaces are show below. For frame members, no single faying surface shall exceed 1 in. in any direction from centroid of faying surface (Section 6.4.b, 6.4.d). Completed connection of two frame members (one faying surface per member) Completed connection of two frame members (3 faying surfaces per member) Faying surfaces are shaded Faying surfaces are shaded #### 3.2. Excess Glue Excess glue is any glue that is not between the faying surfaces but is in contact with glue from a faying surface. Excess glue shall not be $\frac{1}{2}$ inch in any direction from the edge of a faying surface (Sections 6.4.b, 6.4.c, 6.4.d). Excess glue from each connection shall not be in contact (Section 6.4.a). An example of locations where excess glue is permitted is shown below for 3/16 in. by 3/16 in. frame members. Excess glue permitted in lightly shaded areas (3/16 in. x 3/16 in. frame members) #### 3.3. Gusset Plates Gusset plates are permitted. Each gusset plate shall fit in a box with dimensions 1 in. by 1 in. by 0.10 in. (Section 6.4.c). Similar to the excess glue requirements for frame members and wall members, excess glue is confined to ½ inch from the contact surfaces of the gusset plate and frame members (Section 6.4.c). A gusset plate shall be touching at least two frame members, and shall not be in contact with any wall members (Section 6.4.c). ## 3.4. Base Plate and Roof Plate Connections Frame members and/or wall members in contact with the base plate must have glue between the contact surfaces of the member(s) and the base plate (Section 6.4.a). Frame members and/or wall members in contact with the roof plate must have glue between the contact surfaces of the member(s) and the roof plate (Section 6.4.a). # 4. Floor Dead Load Connections Floor dead load connections are required at the floors specified in the Official Rules in both the East-West and North-South directions. The floor dead loads shall be centered in plan view in relation of the center of the base plate. The bottom of the dead load rod shall be in contact with the top of the perimeter beam of the floor in which, the dead load is to be installed on (Section 6.5.a). After installing the rod, a washer will be placed on the rod and a nut will be used to hand-tighten the rod in place. Proper bracing should be included so no members or connections break after installing and tightening the nuts. A diagram is shown below. The floor dead load connections should be designed to allow all floor dead loads to be installed within 8 minutes regardless of the number of people installing the floor dead loads (Section 7.4). Not all floors will have the same dead load applied (Section 7.3.a)—the highest relevant floor will have a larger dead load (2.69 [lb]) compared to the others (1.96 [lb]). Note: Dead load rods will be checked for translation before the structure is placed on the shake table and following each ground motion. Penalties for each unsecured weight rod will be applied per section 7.9.a. A floor can be considered collapsed if any of the conditions described in section 7.9.a are met. However, this does not necessarily mean all floors of the structure are collapsed, as defined in section 7.9.c. A SDC chair will check if the dead weight rods are secured to the structures by trying to move them. The amount of force applied by the SDC chair to the floor dead load rods will be at the discretion of the SDC chair. The check of the rods will be consistent for all teams. To minimize the amount of surprise technical collapses, and in an effort to make the process transparent, the SDC chairs will notify team captains of the floors considered collapse and/or structure technical collapse following each check on shake day. The decision of which floors are collapsed is final, and no appeals may be made. It is responsibility of the teams to ensure the weights are properly secured. # 5. Floor Requirements Section 6.6.a states the minimum number of floors, f, is 13 and maximum number of floors, f, is 19. The top of the perimeter beams shall be no further than $\frac{1}{4}$ in. from the required floor elevation. The roof shall be vertically 3 in. from the topmost floor, F. The roof plate shall be attached to the roof. The diagram below shows an example of a model with the maximum number of floors allowable. According to Section 6.6.b, each floor shall have a continuous set of perimeter beams (labeled with a black dot on the top) and have at least 36 square inches of rentable floor area. Rentable floor area (Section 6.6.c) must be within the perimeter beams and have spans less than 2.5 inches measured perpendicular to any beam. Rentable floor area must have a minimum ceiling height of 2.25 in. and at least two accessible points to any area at least 1 in. wide and 2.25 in. high. Section 6.6.a states that floors may not have more than one independent floor as defined in Section 6.6.b. Section 6.6.d states that any floor plan area shall not exceed 12 in. by 12 in. This will be checked by passing a pattern with a 12 in. by 12 in. opening over top of the model. Please leave clearance so the pattern can pass over or else penalties will be assessed. In the above diagram, a sample floor is shown. Black dots are drawn on the tops of the perimeter beams. Areas hatched with dots are areas that do not count as rentable floor area due to spans greater than 2.5 inches measured from any point perpendicular to a beam bordering the opening. The independent rentable floor area (bottom right) that does meet the requirements for rentable floor area does not count as rentable floor because it cannot be accessed from the larger rentable floor area in the upper half of the floor plan. The lobby floor is defined by black lines drawn between the frame or wall members attached to the structural model base plate. A beam at the second-floor level shall be directly vertical and parallel to any straight black line drawn on the base plate. Also note the black dots on the perimeter beams in the floors above. # 6. Base Plate Requirements #### 6.1. Base Plate The base plate shall be made of plywood (at least 3-ply) or MDF, 18 in. by 18 in. (Section 6.7.a) and between 0.250 in. and 0.50 in. thick (Section 6.7.b). The bottom of the base plate must be flat and smooth (Section 6.7.c). None of the model may be attached to the structural model base plate within 1.25 in. of the any edge (Section 6.7.a). An optional 1/4 in. diameter hole may be drilled within 2 in. of each corner to secure the model during shipping (Section 6.7.c). One of the sides must be labeled North with a black permanent marker (Section 6.7.c). A second identical base plate shall be provided for weighing. Failure to provide a second identical wood base plate will result in the tare weight of the plate to be 0.0 lbs. Therefore, the weight of the base plate will be included in the Structural Model Weight Ws (Section 6.12) used for scoring purposes (Section 6.7.c). Shipping 1/4 in. diameter holes and notching holes are not required in the second base plate (Section 6.7.c). # **6.2.** Base Plate Notching Notching the base plate is allowed, but only at locations where a frame member or wall member are in contact with the base plate. The notched area must be filled in completely with the frame member, wall member, or glue. Glue can only be present within 1/4 in. from the edge of a member breaking the plane of the top of the base plate (Section 6.7.c). An example is shown below: The far-left notch has a 3/16 in. x 3/16 in. frame member and glue filling the 5/16 in. diameter void, which meets the criteria for base plate notching. The top-most notch has a 3/16 in. x 3/16 in. frame member and glue filling most of the 3/4 in. diameter void which does not meet the criteria for base plate notching due to insufficient glue in the hole and glue extending 1/4 in. beyond the frame member edge breaking the top plane of the base plate. This will result in 10 added to V. The bottom-most notch has glue filling a notch without a member within 1/4 in. breaking the top plane of the base plate. This will result in 5 added to V. The far-right notch has glue mostly filling a notch without a member within 1/4 in. breaking the top plane of the base plate. This will result in 10 added to V for two violations of not filling the void and glue 1/4 in. beyond a member breaking the top plane of the base plate. Notching example # 6.3. Securing the Base Plate to the Shake Table Each team will attach the structural models to the shake table with at least 6 C-clamps at the corners and center along the two sides of the structural model base plate parallel with the direction of shaking (Section 7.5). Two 18 in. long steel angles (1 in. legs and 1/8 in. wall thickness) will span on top of the structural model base plate perpendicular to the direction of shaking on each side of the building. The two steel angles will be secured with the 4 corner clamps. Two 12 in. long aluminum angles (1 in. legs and 1/8 in. wall thickness) will span on top of the structural model base plate parallel to the direction of shaking on each side of the building. The two aluminum angles will be secured with a center clamp. If the base plate is warped, the corners of base plate will be clamped so there are no gaps at the corners between the shake table base, the steel angle, and the base plate. A Seismic Design Competition Chair will check each clamp after installation. See the diagram below for where the angles will be located. A clamp will be installed at the locations with a black circle on the diagram. # 7. Roof Plate Requirements The roof plate shall be made of plywood (at least 3-ply) or MDF, 6 in. by 6 in. (Section 6.8.a), and between 0.3 in. and 0.4 in. thick (Section 6.8.b). Teams are advised to use a 3/8 in. plywood and independently verify that the measured thickness falls within the required range. The top of the roof plate must be flat and smooth (Section 6.8.c). The structural model roof plate shall be level and centered on the roof so that the centroid of the roof plate coincides vertically with the centroid of the base plate. If the judges deem that the roof plate is not level or centered, or that it is not made of the allowed materials, or that the accelerometer cannot be attached for any other reason, then the accelerometer will not be attached to the model and the team will receive an *APS* equal to 100% (Section 6.8, Section 2.2). A second identical roof plate shall be provided for weighing. Failure to provide a second identical wood base plate will result in the tare weight of the plate to be 0.0 lbs. Therefore, the weight of the base plate will be included in the Structural Model Weight Ws (Section 6.12) used for scoring purposes (Section 6.8.c). Notching holes are not required in the second roof plate (Section 6.8.c). Roof plate notching is permitted (Section 6.8.c). See the base plate notching example. The framing into the roof plate should allow for the roof dead load to be installed using two C-clamps with a one-inch throat and one-inch jaw opening. # 8. Display Requirements Four pieces of paper no larger than 1.5 inches by 6 inches shall be affixed to the building with the name of the university. One paper shall be facing each of the four cardinal directions (Section 6.11). Each floor shall be labeled with a number according to the official rules (Section 6.11) with either a number written on a piece of paper taped to the floor or the number written directly on the balsa wood. 9. Floor Dead Load Dimensions The floor dead load dimensions are shown in the figures below: Image shows dead-weight rods used throughout structure. On the highest relevant floor, the number of plates on each side of the rod will double. # 10. Roof Dead Load The roof dead load schematic is shown in the figure below: # Roof Elevation View Bracing System Not Shown Dimensions of c-clamps used to secure roof accelerometer. # 11. Instrumentation Schematic The instrumentation setup is illustrated in the figure below: # 12. Ground Motions The scaled ground motions described in Section 7.1 are provided on the 2018 SDC website. For each of the two motions, the acceleration trace is provided in units of g. Where g is the unit of acceleration (32.2 ft/s2 or 9.81 m/s2). The acceleration trace files are titled, EQ1_acc.txt and EQ2_acc.txt for Ground Motions 1 and 2, respectively. The files are organized with time (sec) in the first column and acceleration (g) in the second column. Additionally, for each ground motion the spectral acceleration (units of g), spectral velocity (units of m/s), and spectral displacement (units of m) are provided. The response spectra were generated using a single degree of freedom oscillator and a Newmark average acceleration integrator. The response spectra files are titled, EQ1_spectra.txt and EQ2_spectra.txt for Ground Motions 1 and 2, respectively. The columns from left to right are arranged by time, spectral acceleration, spectral velocity, and spectral displacement.