

THE WIZINSKY FOUNDATION

The Seattle region in the North-Central Puget Sound Lowland lies within the Cascadia subduction zone, at the convergent boundary between the Juan de Fuca and North American plates. Seismic hazard in the region is due to three primary mechanisms: deepfocus oceanic-continental plate interface earthquakes, megathrust events at the subduction zone, and shallow crustal earthquakes of the continental plate [1]. This region typically produces soil profiles containing fine-grained unconsolidated deposits, which aligns with the findings of the boring log [6].

SITE CLASS	E - Soft Cl
RISK CATEGORY	IV - High F
SEISMIC DESIGN CATEGORY	D - Extens

Design Response Spectrum

Recommended Ground Improvement Techniques

- I. Compaction grouting
- II. Permeation grouting
- III. Jet grouting
- IV. Earthquake drains

CL

GP

GP SP

SM

SP-SM

GP-GM

SP

CL-ML

°C

00000

lay Soil

Risk

sive Seismic Design Required

ADDITION DESIGN & ANALYSIS

Floor	Gross Area (in ²)	Architectural	Height Constrained	Total rentable area
		Access Area (in ²)	Area (in ²)	(in²)
19	80.04	9.975	6.672	63.393
18	87.96	9.975	6.672	71.312
17	96.00	9.975	6.672	79.353
16	104.04	9.975	N/A	94.065
15	111.96	12.741	N/A	99.219
14	120.00	12.741	N/A	107.259
13	128.04	12.741	N/A	115.299
12	135.96	12.741	N/A	123.219
11-1	144.00	12.741	N/A	131.259 × 11
	·			

Total 2065.712

Total Weight of Addition: 0.258 lbs

Mode	Period	SumUX	SumUY	SumUZ
1	0.018s	0	0.4804	0
2	0.011s	0.7141	0.4804	0
3	0.008s	0.7141	0.5867	0
23	0.002s	0.8916	0.9027	0
34	0.002s	0.9491	0.925	0

Total Rentable Floor Area of Addition: 884.378 in²

Concentric Braced Frames extended down the east face are a favorable solution in resisting lateral forces as they provide high strength and stiffness while also allowing natural light infiltration. Stacked multi-storey X-bracing was utilized to maintain continuity as well as balance the lateral resistance in the system design for ground motions in both directions.

Torsional irregularity improvements following the retrofit design.

Collapse Risk

With the annualized collapse risk, the 50-year collapse risk was determined to be 1.95869%, which does not meet code requirements. The retrofit will need to achieve a minimum reduction factor of 1.96822 to achieve the minimum code requirements.

Architectural and Environmental

Exterior design inspiration pulled elements from iconic Seattle buildings, such as the Rainier Square designed by Minoru Yamasaki.

The facade utilizes nonuniform elements to highlight the cascading design of floors eleven through nineteen, inspired by the nearby Cascadia mountain range.

	0 0		
3-1,521	design of floors elev		
3 <u>5</u>	through nineteen, ir		
	by the nearby Casca		
a sing Bis samann Dissa	mountain range.		

Patient and staff movements are shown on the floor plans, of which an integral part is the three elevators and emergency stairs located at the centre of the building.

ß	LEED Category	Points	
2	Water Efficiency & Energy & Atmosphere	20	
5	Indoor Environmental Quality	10	1
ŗ	Sustainable Sites	4	
1	Materials and Resources	11	A. C.

